Carat Weight

The weight of a diamond is measured in carats. One carat is divided into 100 parts called "points"

$$
(1 \mathrm{ct}=1.00)(1 / 2 \mathrm{ct}=0.50)
$$

The value of two diamonds of the same weight can vary greatly depending on the color, clarity and especially the cut. Below are two identical pieces of rough, (uncut diamonds) each of the same quality and value.

Example 1. From one piece of rough a diamond has been cut to Ideal proportions, retaining a weight of one carat (1.00 ct). The Light is totally reflected through the top.

Example 2. The second piece of rough has been "spread" in its cutting, resulting in a diamond weighing approximatly 1.40 ct . Note: The girdle is thicker, the table is much larger, the angles are exaggerated, all at the expense of the diamond's ability to reflect light.

Therefore, one can see that the value of a diamond can vary as much a 40% in the cutting alone.

IDEAL CUT DIAMOND

INFERIOR CUT DIAMOND

A MESSAGE FROM A MASTER CUTTER

This brochure is designed to afford the discerning buyer the opportunity to study the aspects of a diamonds qualities and how these qualities relate to its beauty and value.

A clear understanding will add to one's enjoyment and confidence in the purchase of finely cut diamond.

Addeo Jewelers
P.O. BOX 95-0515 LAKE MARY, FLORIDA 32795-0515

407-333-390 FAX 407-333-3275 www.addeojewelers.com
E-mail: jeaddeo@aol.com
Appraisals: www.floridajewelryappraisals.com Legal: www.jurispro.com

THE

IDEALCUT DIAMOND

YOUR GUIDE TO THE FOUR C's

THE IDEAL CUT

When a round brilliant diamond has been cut to "Ideal" proportions by a master cutter, it is a splendor to behold.

The Ideal Cut Diamond describes a round brilliant diamond that has been cut to exact and mathematically proven proportions. Its symmetry, with 58 exactly placed facets, produces the ultimate in lustre and beauty.

When a diamond is cut to the ideal proportions, all of the light entering from any direction is totally reflected through the top and is dispersed into a display of sparkling flashes and rainbow colors.

PROPORTIONS OF THE IDEAL CUT

Cut

PREMIUM CUT

A Premium Cut diamond demonstrates subtle variations from the Ideal Cut. Although dimensional differences affect a diamond's reflection of light, a Premium Cut still achieves a harmonious balance between its proportions and the display of brilliance.

PROPORTIONS OF THE PREMIUM CUT

THE IDEAL CUT Light* entering the diamond eflects internally from facet to acet and is reflected back maximum brilliand creating maximum brilliance.

INFERIOR CUT

Most diamonds are "spread" in their cutting to retain maximum weight from the original rough. A heavier diamond will result, but at a dramatic sacrifice of potential fire and brilliance.

TOO DEEP
When a diamond is cut too deep, light* leaks out of the ottom, brilliance is lost and he center of the diamond will appear to be dark

IOO SHALLOW
When a diamond is cut too shallow, light* leaks out of the bottom, briliance is lost and glassy and dark.
*Arows on the diagram simulate the flow of light in
 the diamond.

COLOR

Most diamonds, although appearing colorless, actually have slight tones of yellow or brown. As these tones become more easily apparent, the rarity and the cost decrease.

Ideal cutting dramatizes the rare splendor of a diamond because it produces such dazzling brilliance.

COLOR GRADING SCALE

CLARITY

Practically all diamonds contain naturally occurring internal characteristics called inclusions. The size, nature, location and amount of inclusions determine a diamond's clarity grade and affect its cost.

One unique advantage of the Ideal Cut is that its sparkle can mask otherwise noticeable inclusions.

FL-IF No inclusions visible fby an expert) under 10 x
magnifctiction [Fl. $=$ Flawiess. IF = Ituerrall Y Flawless.

$V V S_{1}-V V S_{2}$ Minute-extientely
difificult to fix in under difificult to tixix under
$10 x$. UVS $=\|$ ery veny slight: inclusions.)

$V S_{1}-V S_{2}$ Miritar-difificult in find
under 10 x VS $=$ Very slight inclusions.)

$\mathrm{SI}_{1}-\mathrm{SI}_{2}$
Noticeable, relatively
(Si) $=$ Small inclusions.

$l_{1}-I_{2}$
Obvious under 10x-
mis $=$ huperest

CLARITY GRADING SLALE

